Quiz 8; Tuesday, 3/19/2019
Section \#203; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. TRUE False The Law of Large Numbers tells us that for fixed $\epsilon>0$, the probability $P(|\bar{X}-\bar{\mu}|<\epsilon)$ goes to 1 for large n.

Solution: The version stated in class says that the stuff outside of ϵ goes to 0 which means the stuff inside ϵ must go to 1 minus that or 1 .
2. True FALSE For large n, the average random variable \bar{X} is nomrally distributed.

Solution: The CLT tells us that \bar{X} is approximately normally distributed.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) Suppose that a random basketball fan has a 10% chance of liking the Lakers and this probability is independent of any other fan.
(a) (2 points) Choose a random fan. Let X be the random variable that outputs 1 if they like the Lakers and 0 otherwise. What is $E[X]$ and $S E(X)$? (Simplify your answer)

Solution: This is a Bernoulli trial with probability of success $p=0.1$. Then $E[X]=p=0.1$ and $S E(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{p(1-p)}=\sqrt{0.1(0.9)}=0.3$.
(b) (4 points) What is the probability that in a party of 25 fans, at most $4 \%\left(=\frac{1}{25}\right)$ of them like the Lakers? (You do not need to simplify your answer)

Solution: This is repeating 25 Bernoulli trials so this is a binomial distribution. We have $n=25, p=0.1$ and the probability that at most 1 likes the Lakers is

$$
f(0)+f(1)=\binom{25}{0}(0.1)^{0}(0.9)^{25}+\binom{25}{1}(0.1)^{1}(0.9)^{24}
$$

(c) (4 points) Use the CLT to approximate the probability that at most 4% of the 25 fans like the Lakers. (Hint: $z(1)=0.3413$)

Solution: Let \bar{X} be the average of the X_{i} for the fans, which is the percentage of fans who like the Lakers out of a party of $n=25$ of them. Then $\bar{\mu}=\mu=0.1$ and $\bar{\sigma}=\sigma / \sqrt{n}=0.3 / \sqrt{25}=0.06$. We want to calculate $P(\bar{X} \leq 0.04)$. The CLT tells us that \bar{X} is approximately normally distributed so using z scores, this probability is approximately $1 / 2-z(|0.04-0.1| / 0.06)=1 / 2-z(1)=0.1387$.

